Shortcuts

mmedit.models.editors.ddpm.res_blocks

Module Contents

Classes

ResnetBlock2D

resnet block support down sample and up sample.

Upsample2D

An upsampling layer with an optional convolution.

Downsample2D

A downsampling layer with an optional convolution.

class mmedit.models.editors.ddpm.res_blocks.ResnetBlock2D(in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, groups_out=None, pre_norm=True, eps=1e-06, non_linearity='silu', time_embedding_norm='default', output_scale_factor=1.0, use_in_shortcut=None, up=False, down=False)[源代码]

Bases: torch.nn.Module

resnet block support down sample and up sample.

参数
  • in_channels (int) – input channels.

  • out_channels (int) – output channels.

  • conv_shortcut (bool) – whether to use conv shortcut.

  • dropout (float) – dropout rate.

  • temb_channels (int) – time embedding channels.

  • groups (int) – conv groups.

  • groups_out (int) – conv out groups.

  • pre_norm (bool) – whether to norm before conv. Todo: remove.

  • eps (float) – eps for groupnorm.

  • non_linearity (str) – non linearity type.

  • time_embedding_norm (str) – time embedding norm type.

  • output_scale_factor (float) – factor to scale input and output.

  • use_in_shortcut (bool) – whether to use conv in shortcut.

  • up (bool) – whether to upsample.

  • down (bool) – whether to downsample.

forward(input_tensor, temb)[源代码]

forward with hidden states and time embeddings.

class mmedit.models.editors.ddpm.res_blocks.Upsample2D(channels, use_conv=False, use_conv_transpose=False, out_channels=None, name='conv')[源代码]

Bases: torch.nn.Module

An upsampling layer with an optional convolution.

参数
  • channels (int) – channels in the inputs and outputs.

  • use_conv (bool) – a bool determining if a convolution is applied.

  • use_conv_transpose (bool) – whether to use conv transpose.

  • out_channels (int) – output channels.

forward(hidden_states, output_size=None)[源代码]

forward with hidden states.

class mmedit.models.editors.ddpm.res_blocks.Downsample2D(channels, use_conv=False, out_channels=None, padding=1, name='conv')[源代码]

Bases: torch.nn.Module

A downsampling layer with an optional convolution.

参数
  • channels (int) – channels in the inputs and outputs.

  • use_conv (bool) – a bool determining if a convolution is applied.

  • out_channels (int) – output channels

  • padding (int) – padding num

forward(hidden_states)[源代码]

forward with hidden states.

Read the Docs v: latest
Versions
master
latest
stable
zyh-doc-notfound-extend
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.