Shortcuts

mmedit.datasets.transforms.normalization 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import numpy as np
from mmcv.transforms import BaseTransform

from mmedit.registry import TRANSFORMS


@TRANSFORMS.register_module()
[文档]class Normalize(BaseTransform): """Normalize images with the given mean and std value. Required keys are the keys in attribute "keys", added or modified keys are the keys in attribute "keys" and these keys with postfix '_norm_cfg'. It also supports normalizing a list of images. Args: keys (Sequence[str]): The images to be normalized. mean (np.ndarray): Mean values of different channels. std (np.ndarray): Std values of different channels. to_rgb (bool): Whether to convert channels from BGR to RGB. Default: False. save_original (bool): Whether to save original images. Default: False. """ def __init__(self, keys, mean, std, to_rgb=False, save_original=False): self.keys = keys self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb self.save_original = save_original
[文档] def transform(self, results): """transform function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ for key in self.keys: if isinstance(results[key], list): if self.save_original: results[key + '_unnormalised'] = [ v.copy() for v in results[key] ] results[key] = [ mmcv.imnormalize(v, self.mean, self.std, self.to_rgb) for v in results[key] ] else: if self.save_original: results[key + '_unnormalised'] = results[key].copy() results[key] = mmcv.imnormalize(results[key], self.mean, self.std, self.to_rgb) results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_rgb=self.to_rgb) return results
[文档] def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(keys={self.keys}, mean={self.mean}, std={self.std}, ' f'to_rgb={self.to_rgb})') return repr_str
@TRANSFORMS.register_module()
[文档]class RescaleToZeroOne(BaseTransform): """Transform the images into a range between 0 and 1. Required keys are the keys in attribute "keys", added or modified keys are the keys in attribute "keys". It also supports rescaling a list of images. Args: keys (Sequence[str]): The images to be transformed. """ def __init__(self, keys): self.keys = keys
[文档] def transform(self, results): """transform function. Args: results (dict): A dict containing the necessary information and data for augmentation. Returns: dict: A dict containing the processed data and information. """ for key in self.keys: if isinstance(results[key], list): results[key] = [ v.astype(np.float32) / 255. for v in results[key] ] else: results[key] = results[key].astype(np.float32) / 255. return results
[文档] def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})'
Read the Docs v: latest
Versions
master
latest
stable
zyh-doc-notfound-extend
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.