Shortcuts

Migration of Evaluation and Testing Settings

We update evaluation settings in MMEdit 1.x. Important modifications are as following.

  • The evaluation field is split to val_evaluator and test_evaluator. The interval is moved to train_cfg.val_interval.

  • The metrics to evaluation are moved from test_cfg to val_evaluator and test_evaluator.

Original New
train_cfg = None  # Training config
test_cfg = dict(  # Test config
    metrics=['PSNR'],  # Metrics used during testing
    crop_border=scale)  # Crop border during evaluation

evaluation = dict(  # The config to build the evaluation hook
    interval=5000,  # Evaluation interval
    save_image=True,  # Save images during evaluation
    gpu_collect=True)  # Use gpu collect
val_evaluator = [
    dict(type='PSNR', crop_border=scale),  # The name of metrics to evaluate
]
test_evaluator = val_evaluator

train_cfg = dict(
    type='IterBasedTrainLoop', max_iters=300000, val_interval=5000)  # Config of train loop type
val_cfg = dict(type='ValLoop')  # The name of validation loop type
test_cfg = dict(type='TestLoop')  # The name of test loop type

We have merged MMGeneration 1.x into MMEditing. Here is migration of Evaluation and Testing Settings about MMGeneration.

The evaluation field is splited to val_evaluator and test_evaluator. And it won’t support interval and save_best arguments. The interval is moved to train_cfg.val_interval, see the schedule settings and the save_best is moved to default_hooks.checkpoint.save_best.

0.x Version 1.x Version
evaluation = dict(
    type='GenerativeEvalHook',
    interval=10000,
    metrics=[
        dict(
            type='FID',
            num_images=50000,
            bgr2rgb=True,
            inception_args=dict(type='StyleGAN')),
        dict(type='IS', num_images=50000)
    ],
    best_metric=['fid', 'is'],
    sample_kwargs=dict(sample_model='ema'))
val_evaluator = dict(
    type='GenEvaluator',
    metrics=[
        dict(
            type='FID',
            prefix='FID-Full-50k',
            fake_nums=50000,
            inception_style='StyleGAN',
            sample_model='orig')
        dict(
            type='IS',
            prefix='IS-50k',
            fake_nums=50000)])
# set best config
default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook',
        interval=10000,
        by_epoch=False,
        less_keys=['FID-Full-50k/fid'],
        greater_keys=['IS-50k/is'],
        save_optimizer=True,
        save_best=['FID-Full-50k/fid', 'IS-50k/is'],
        rule=['less', 'greater']))
test_evaluator = val_evaluator

To evaluate and test the model correctly, we need to set specific loop in val_cfg and test_cfg.

Static Model in 0.x Version Static Model in 1.x Version
total_iters = 1000000

runner = dict(
    type='DynamicIterBasedRunner',
    is_dynamic_ddp=False,
    pass_training_status=True)
train_cfg = dict(
    by_epoch=False,  # use iteration based training
    max_iters=1000000,  # max training iteration
    val_begin=1,
    val_interval=10000)  # evaluation interval
val_cfg = dict(type='GenValLoop')  # specific loop in validation
test_cfg = dict(type='GenTestLoop')  # specific loop in testing
Read the Docs v: zyh/re-docs
Versions
master
latest
stable
zyh-re-docs
zyh-doc-notfound-extend
zyh-api-rendering
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.