Shortcuts

Source code for mmedit.engine.hooks.pickle_data_hook

# Copyright (c) OpenMMLab. All rights reserved.

import logging
import os
import pickle
from typing import List, Optional, Sequence, Tuple

import numpy as np
import torch
from mmengine import is_list_of, mkdir_or_exist, print_log
from mmengine.dist import master_only
from mmengine.hooks import Hook
from mmengine.runner import Runner
from torch import Tensor

from mmedit.registry import HOOKS

[docs]DATA_BATCH = Optional[Sequence[dict]]
@HOOKS.register_module()
[docs]class PickleDataHook(Hook): """Pickle Useful Data Hook. This hook will be used in SinGAN training for saving some important data that will be used in testing or inference. Args: output_dir (str): The output path for saving pickled data. data_name_list (list[str]): The list contains the name of results in outputs dict. interval (int): The interval of calling this hook. If set to -1, the PickleDataHook will not be called during training. Default: -1. before_run (bool, optional): Whether to save before running. Defaults to False. after_run (bool, optional): Whether to save after running. Defaults to False. filename_tmpl (str, optional): Format string used to save images. The output file name will be formatted as this args. Defaults to 'iter_{}.pkl'. """ def __init__(self, output_dir, data_name_list, interval=-1, before_run=False, after_run=False, filename_tmpl='iter_{}.pkl'): assert is_list_of(data_name_list, str) self.output_dir = output_dir self.data_name_list = data_name_list self.interval = interval self.filename_tmpl = filename_tmpl self._before_run = before_run self._after_run = after_run @master_only
[docs] def after_run(self, runner): """The behavior after each train iteration. Args: runner (object): The runner. """ if self._after_run: self._pickle_data(runner)
@master_only
[docs] def before_run(self, runner): """The behavior after each train iteration. Args: runner (object): The runner. """ if self._before_run: self._pickle_data(runner)
@master_only
[docs] def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None): """The behavior after each train iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (dict, optional): Outputs from model. Defaults to None. """ if not self.every_n_train_iters(runner, self.interval): return self._pickle_data(runner)
[docs] def _pickle_data(self, runner: Runner): """Save target data to pickle file. Args: runner (Runner): The runner of the training process. """ filename = self.filename_tmpl.format(runner.iter + 1) if not hasattr(self, '_out_dir'): self._out_dir = os.path.join(runner.work_dir, self.output_dir) mkdir_or_exist(self._out_dir) file_path = os.path.join(self._out_dir, filename) with open(file_path, 'wb') as f: module = runner.model if hasattr(module, 'module'): module = module.module not_find_keys = [] data_dict = {} for k in self.data_name_list: if hasattr(module, k): data_dict[k] = self._get_numpy_data(getattr(module, k)) else: not_find_keys.append(k) pickle.dump(data_dict, f) print_log(f'Pickle data in {filename}', 'current') if len(not_find_keys) > 0: print_log( f'Cannot find keys for pickling: {not_find_keys}', 'current', level=logging.WARN) f.flush()
[docs] def _get_numpy_data( self, data: Tuple[List[Tensor], Tensor, int] ) -> Tuple[List[np.ndarray], np.ndarray, int]: """Convert tensor or list of tensor to numpy or list of numpy. Args: data (Tuple[List[Tensor], Tensor, int]): Data to be converted. Returns: Tuple[List[np.ndarray], np.ndarray, int]: Converted data. """ if isinstance(data, list): return [self._get_numpy_data(x) for x in data] if isinstance(data, torch.Tensor): return data.cpu().numpy() return data
Read the Docs v: latest
Versions
master
latest
stable
zyh-re-docs
zyh-doc-notfound-extend
zyh-api-rendering
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.