Shortcuts

Source code for mmedit.datasets.mscoco_dataset

# Copyright (c) OpenMMLab. All rights reserved.
import os
import random
from typing import Optional, Sequence, Union

import mmengine
from mmengine.fileio import get_file_backend

from mmedit.registry import DATASETS
from .basic_conditional_dataset import BasicConditionalDataset


@DATASETS.register_module()
@DATASETS.register_module('MSCOCO')
[docs]class MSCoCoDataset(BasicConditionalDataset): """MSCoCo 2014 dataset. Args: ann_file (str): Annotation file path. Defaults to ''. metainfo (dict, optional): Meta information for dataset, such as class information. Defaults to None. data_root (str): The root directory for ``data_prefix`` and ``ann_file``. Defaults to ''. drop_caption_rate (float, optional): Rate of dropping caption, used for training. Defaults to 0.0. phase (str, optional): Subdataset used for certain phase, can be set to `train`, `test` and `val`. Defaults to 'train'. year (int, optional): Version of CoCo dataset, can be set to 2014 and 2017. Defaults to 2014. data_prefix (str | dict): Prefix for the data. Defaults to ''. extensions (Sequence[str]): A sequence of allowed extensions. Defaults to ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'). lazy_init (bool): Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file. ``Basedataset`` can skip load annotations to save time by set ``lazy_init=False``. Defaults to False. **kwargs: Other keyword arguments in :class:`BaseDataset`. """
[docs] METAINFO = dict(dataset_type='text_image_dataset', task_name='editing')
def __init__(self, ann_file: str = '', metainfo: Optional[dict] = None, data_root: str = '', drop_caption_rate=0.0, phase='train', year=2014, data_prefix: Union[str, dict] = '', extensions: Sequence[str] = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'), lazy_init: bool = False, classes: Union[str, Sequence[str], None] = None, **kwargs): ann_file = os.path.join('annotations', 'captions_' + phase + f'{year}.json') if ann_file == '' else ann_file self.image_prename = 'COCO_' + phase + f'{year}_' self.phase = phase self.drop_rate = drop_caption_rate self.year = year assert self.year == 2014, 'We only support CoCo2014 now.' super().__init__( ann_file=ann_file, metainfo=metainfo, data_root=data_root, data_prefix=data_prefix, extensions=extensions, lazy_init=lazy_init, classes=classes, **kwargs)
[docs] def load_data_list(self): """Load image paths and gt_labels.""" if self.img_prefix: file_backend = get_file_backend(uri=self.img_prefix) json_file = mmengine.fileio.io.load(self.ann_file) def add_prefix(filename, prefix=''): if not prefix: return filename else: return file_backend.join_path(prefix, filename) data_list = [] for item in json_file['annotations']: image_name = self.image_prename + str( item['image_id']).zfill(12) + '.jpg' img_path = add_prefix( os.path.join(self.phase + str(self.year), image_name), self.img_prefix) caption = item['caption'].lower() info = { 'img_path': img_path, 'gt_label': caption if (self.phase != 'train' or self.drop_rate < 1e-6 or random.random() >= self.drop_rate) else '' } data_list.append(info) return data_list
Read the Docs v: latest
Versions
master
latest
stable
zyh-re-docs
zyh-doc-notfound-extend
zyh-api-rendering
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.